\(\int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [793]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 151 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {\sec (c+d x)}{a^3 d}+\frac {\sec ^3(c+d x)}{3 a^3 d}+\frac {\sec ^5(c+d x)}{5 a^3 d}+\frac {4 \sec ^7(c+d x)}{7 a^3 d}-\frac {3 \tan (c+d x)}{a^3 d}-\frac {10 \tan ^3(c+d x)}{3 a^3 d}-\frac {11 \tan ^5(c+d x)}{5 a^3 d}-\frac {4 \tan ^7(c+d x)}{7 a^3 d} \]

[Out]

-arctanh(cos(d*x+c))/a^3/d+sec(d*x+c)/a^3/d+1/3*sec(d*x+c)^3/a^3/d+1/5*sec(d*x+c)^5/a^3/d+4/7*sec(d*x+c)^7/a^3
/d-3*tan(d*x+c)/a^3/d-10/3*tan(d*x+c)^3/a^3/d-11/5*tan(d*x+c)^5/a^3/d-4/7*tan(d*x+c)^7/a^3/d

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {2954, 2952, 3852, 2702, 308, 213, 2686, 30, 2687, 276} \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a^3 d}-\frac {4 \tan ^7(c+d x)}{7 a^3 d}-\frac {11 \tan ^5(c+d x)}{5 a^3 d}-\frac {10 \tan ^3(c+d x)}{3 a^3 d}-\frac {3 \tan (c+d x)}{a^3 d}+\frac {4 \sec ^7(c+d x)}{7 a^3 d}+\frac {\sec ^5(c+d x)}{5 a^3 d}+\frac {\sec ^3(c+d x)}{3 a^3 d}+\frac {\sec (c+d x)}{a^3 d} \]

[In]

Int[(Csc[c + d*x]*Sec[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a^3*d)) + Sec[c + d*x]/(a^3*d) + Sec[c + d*x]^3/(3*a^3*d) + Sec[c + d*x]^5/(5*a^3*d)
+ (4*Sec[c + d*x]^7)/(7*a^3*d) - (3*Tan[c + d*x])/(a^3*d) - (10*Tan[c + d*x]^3)/(3*a^3*d) - (11*Tan[c + d*x]^5
)/(5*a^3*d) - (4*Tan[c + d*x]^7)/(7*a^3*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2686

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2702

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2954

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc (c+d x) \sec ^8(c+d x) (a-a \sin (c+d x))^3 \, dx}{a^6} \\ & = \frac {\int \left (-3 a^3 \sec ^8(c+d x)+a^3 \csc (c+d x) \sec ^8(c+d x)+3 a^3 \sec ^7(c+d x) \tan (c+d x)-a^3 \sec ^6(c+d x) \tan ^2(c+d x)\right ) \, dx}{a^6} \\ & = \frac {\int \csc (c+d x) \sec ^8(c+d x) \, dx}{a^3}-\frac {\int \sec ^6(c+d x) \tan ^2(c+d x) \, dx}{a^3}-\frac {3 \int \sec ^8(c+d x) \, dx}{a^3}+\frac {3 \int \sec ^7(c+d x) \tan (c+d x) \, dx}{a^3} \\ & = \frac {\text {Subst}\left (\int \frac {x^8}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a^3 d}-\frac {\text {Subst}\left (\int x^2 \left (1+x^2\right )^2 \, dx,x,\tan (c+d x)\right )}{a^3 d}+\frac {3 \text {Subst}\left (\int x^6 \, dx,x,\sec (c+d x)\right )}{a^3 d}+\frac {3 \text {Subst}\left (\int \left (1+3 x^2+3 x^4+x^6\right ) \, dx,x,-\tan (c+d x)\right )}{a^3 d} \\ & = \frac {3 \sec ^7(c+d x)}{7 a^3 d}-\frac {3 \tan (c+d x)}{a^3 d}-\frac {3 \tan ^3(c+d x)}{a^3 d}-\frac {9 \tan ^5(c+d x)}{5 a^3 d}-\frac {3 \tan ^7(c+d x)}{7 a^3 d}-\frac {\text {Subst}\left (\int \left (x^2+2 x^4+x^6\right ) \, dx,x,\tan (c+d x)\right )}{a^3 d}+\frac {\text {Subst}\left (\int \left (1+x^2+x^4+x^6+\frac {1}{-1+x^2}\right ) \, dx,x,\sec (c+d x)\right )}{a^3 d} \\ & = \frac {\sec (c+d x)}{a^3 d}+\frac {\sec ^3(c+d x)}{3 a^3 d}+\frac {\sec ^5(c+d x)}{5 a^3 d}+\frac {4 \sec ^7(c+d x)}{7 a^3 d}-\frac {3 \tan (c+d x)}{a^3 d}-\frac {10 \tan ^3(c+d x)}{3 a^3 d}-\frac {11 \tan ^5(c+d x)}{5 a^3 d}-\frac {4 \tan ^7(c+d x)}{7 a^3 d}+\frac {\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a^3 d} \\ & = -\frac {\text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {\sec (c+d x)}{a^3 d}+\frac {\sec ^3(c+d x)}{3 a^3 d}+\frac {\sec ^5(c+d x)}{5 a^3 d}+\frac {4 \sec ^7(c+d x)}{7 a^3 d}-\frac {3 \tan (c+d x)}{a^3 d}-\frac {10 \tan ^3(c+d x)}{3 a^3 d}-\frac {11 \tan ^5(c+d x)}{5 a^3 d}-\frac {4 \tan ^7(c+d x)}{7 a^3 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(341\) vs. \(2(151)=302\).

Time = 0.91 (sec) , antiderivative size = 341, normalized size of antiderivative = 2.26 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {60-\frac {120 \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )}-324 \sin \left (\frac {1}{2} (c+d x)\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+162 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2-706 \sin \left (\frac {1}{2} (c+d x)\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3+353 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^4-2281 \sin \left (\frac {1}{2} (c+d x)\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^5-840 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6+840 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6+\frac {105 \sin \left (\frac {1}{2} (c+d x)\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}}{840 d (a+a \sin (c+d x))^3} \]

[In]

Integrate[(Csc[c + d*x]*Sec[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

(60 - (120*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) - 324*Sin[(c + d*x)/2]*(Cos[(c + d*x)/2] +
Sin[(c + d*x)/2]) + 162*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 - 706*Sin[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin
[(c + d*x)/2])^3 + 353*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4 - 2281*Sin[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin
[(c + d*x)/2])^5 - 840*Log[Cos[(c + d*x)/2]]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^6 + 840*Log[Sin[(c + d*x)/2
]]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^6 + (105*Sin[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^6)/(C
os[(c + d*x)/2] - Sin[(c + d*x)/2]))/(840*d*(a + a*Sin[c + d*x])^3)

Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {8}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}+\frac {42}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {11}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {67}{6 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {31}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {49}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d \,a^{3}}\) \(139\)
default \(\frac {-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {8}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}+\frac {42}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {11}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {67}{6 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {31}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {49}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d \,a^{3}}\) \(139\)
risch \(\frac {12 i {\mathrm e}^{6 i \left (d x +c \right )}+2 \,{\mathrm e}^{7 i \left (d x +c \right )}-24 i {\mathrm e}^{4 i \left (d x +c \right )}-\frac {82 \,{\mathrm e}^{5 i \left (d x +c \right )}}{3}-\frac {364 i {\mathrm e}^{2 i \left (d x +c \right )}}{15}-\frac {134 \,{\mathrm e}^{3 i \left (d x +c \right )}}{15}+\frac {272 i}{105}+\frac {474 \,{\mathrm e}^{i \left (d x +c \right )}}{35}}{\left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{7} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) d \,a^{3}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{3}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{3}}\) \(160\)
parallelrisch \(\frac {105 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+630 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2310 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3430 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1050 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2758 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3878 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2022 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-442}{105 d \,a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}\) \(162\)
norman \(\frac {\frac {10 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {442}{105 a d}+\frac {6 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {98 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}+\frac {22 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {394 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}-\frac {554 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}-\frac {674 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{35 d a}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7} a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(189\)

[In]

int(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d/a^3*(-1/8/(tan(1/2*d*x+1/2*c)-1)+ln(tan(1/2*d*x+1/2*c))+8/7/(tan(1/2*d*x+1/2*c)+1)^7-4/(tan(1/2*d*x+1/2*c)
+1)^6+42/5/(tan(1/2*d*x+1/2*c)+1)^5-11/(tan(1/2*d*x+1/2*c)+1)^4+67/6/(tan(1/2*d*x+1/2*c)+1)^3-31/4/(tan(1/2*d*
x+1/2*c)+1)^2+49/8/(tan(1/2*d*x+1/2*c)+1))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.44 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {272 \, \cos \left (d x + c\right )^{4} - 594 \, \cos \left (d x + c\right )^{2} - 105 \, {\left (3 \, \cos \left (d x + c\right )^{3} + {\left (\cos \left (d x + c\right )^{3} - 4 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) - 4 \, \cos \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 105 \, {\left (3 \, \cos \left (d x + c\right )^{3} + {\left (\cos \left (d x + c\right )^{3} - 4 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) - 4 \, \cos \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 6 \, {\left (101 \, \cos \left (d x + c\right )^{2} + 15\right )} \sin \left (d x + c\right ) - 120}{210 \, {\left (3 \, a^{3} d \cos \left (d x + c\right )^{3} - 4 \, a^{3} d \cos \left (d x + c\right ) + {\left (a^{3} d \cos \left (d x + c\right )^{3} - 4 \, a^{3} d \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/210*(272*cos(d*x + c)^4 - 594*cos(d*x + c)^2 - 105*(3*cos(d*x + c)^3 + (cos(d*x + c)^3 - 4*cos(d*x + c))*sin
(d*x + c) - 4*cos(d*x + c))*log(1/2*cos(d*x + c) + 1/2) + 105*(3*cos(d*x + c)^3 + (cos(d*x + c)^3 - 4*cos(d*x
+ c))*sin(d*x + c) - 4*cos(d*x + c))*log(-1/2*cos(d*x + c) + 1/2) - 6*(101*cos(d*x + c)^2 + 15)*sin(d*x + c) -
 120)/(3*a^3*d*cos(d*x + c)^3 - 4*a^3*d*cos(d*x + c) + (a^3*d*cos(d*x + c)^3 - 4*a^3*d*cos(d*x + c))*sin(d*x +
 c))

Sympy [F]

\[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\int \frac {\csc {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\sin ^{3}{\left (c + d x \right )} + 3 \sin ^{2}{\left (c + d x \right )} + 3 \sin {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)**2/(a+a*sin(d*x+c))**3,x)

[Out]

Integral(csc(c + d*x)*sec(c + d*x)**2/(sin(c + d*x)**3 + 3*sin(c + d*x)**2 + 3*sin(c + d*x) + 1), x)/a**3

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 336 vs. \(2 (139) = 278\).

Time = 0.22 (sec) , antiderivative size = 336, normalized size of antiderivative = 2.23 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {2 \, {\left (\frac {1011 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {1939 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {1379 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {525 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {1715 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {1155 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {315 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + 221\right )}}{a^{3} + \frac {6 \, a^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {14 \, a^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {14 \, a^{3} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {14 \, a^{3} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {14 \, a^{3} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {6 \, a^{3} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {a^{3} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}} + \frac {105 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}}{105 \, d} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/105*(2*(1011*sin(d*x + c)/(cos(d*x + c) + 1) + 1939*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1379*sin(d*x + c)^
3/(cos(d*x + c) + 1)^3 - 525*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 1715*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 -
1155*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 315*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 221)/(a^3 + 6*a^3*sin(d*x
 + c)/(cos(d*x + c) + 1) + 14*a^3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 14*a^3*sin(d*x + c)^3/(cos(d*x + c) +
1)^3 - 14*a^3*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 14*a^3*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 6*a^3*sin(d*x
 + c)^7/(cos(d*x + c) + 1)^7 - a^3*sin(d*x + c)^8/(cos(d*x + c) + 1)^8) + 105*log(sin(d*x + c)/(cos(d*x + c) +
 1))/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.89 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {840 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{3}} - \frac {105}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}} + \frac {5145 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 24360 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 54005 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 66080 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 47691 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 18872 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3431}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{7}}}{840 \, d} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/840*(840*log(abs(tan(1/2*d*x + 1/2*c)))/a^3 - 105/(a^3*(tan(1/2*d*x + 1/2*c) - 1)) + (5145*tan(1/2*d*x + 1/2
*c)^6 + 24360*tan(1/2*d*x + 1/2*c)^5 + 54005*tan(1/2*d*x + 1/2*c)^4 + 66080*tan(1/2*d*x + 1/2*c)^3 + 47691*tan
(1/2*d*x + 1/2*c)^2 + 18872*tan(1/2*d*x + 1/2*c) + 3431)/(a^3*(tan(1/2*d*x + 1/2*c) + 1)^7))/d

Mupad [B] (verification not implemented)

Time = 12.66 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.95 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {-6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-22\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-\frac {98\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{3}-10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\frac {394\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{15}+\frac {554\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{15}+\frac {674\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{35}+\frac {442}{105}}{a^3\,d\,\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}^7} \]

[In]

int(1/(cos(c + d*x)^2*sin(c + d*x)*(a + a*sin(c + d*x))^3),x)

[Out]

log(tan(c/2 + (d*x)/2))/(a^3*d) - ((674*tan(c/2 + (d*x)/2))/35 + (554*tan(c/2 + (d*x)/2)^2)/15 + (394*tan(c/2
+ (d*x)/2)^3)/15 - 10*tan(c/2 + (d*x)/2)^4 - (98*tan(c/2 + (d*x)/2)^5)/3 - 22*tan(c/2 + (d*x)/2)^6 - 6*tan(c/2
 + (d*x)/2)^7 + 442/105)/(a^3*d*(tan(c/2 + (d*x)/2) - 1)*(tan(c/2 + (d*x)/2) + 1)^7)